The electric potential energy of the electron depends on the potential difference applied between the two ends of the cable. Indeed, the electric potential energy of a charge is given by
where q is the magnitude of the charge, while
is the potential difference applied. So, U depends on
.
Answer:
v₂ = 7/ (0.5)= 14 m/s
Explanation:
Flow rate of the fluid
Flow rate is the amount of fluid that circulates through a section of the pipeline (pipe, pipeline, river, canal, ...) per unit of time.
The formula for calculated the flow rate is:
Q= v*A Formula (1)
Where :
Q is the Flow rate (m³/s)
A is the cross sectional area of a section of the pipe (m²)
v is the speed of the fluid in that section (m/s)
Equation of continuity
The volume flow rate Q for an incompressible fluid at any point along a pipe is the same as the volume flow rate at any other point along a pipe:
Q₁= Q₂
Data
A₁ = 2m² : cross sectional area 1
v₁ = 3.5 m/s : fluid speed through A₁
A₂ = 0.5 m² : cross sectional area 2
Calculation of the fluid speed through A₂
We aply the equation of continuity:
Q₁= Q₂
We aply the equation of Formula (1):
v₁*A₁= v₂*A₂
We replace data
(3.5)*(2)= v₂*(0.5)
7 = v₂*(0.5)
v₂ = 7/ (0.5)
v₂ = 14 m/s
Answer:
3g/cm³
Explanation:
<em>Use the formula:</em>
density = mass ÷ volume
<em>Substitute (plug in) the values:</em>
density = 3 ÷ 1 = 3g/cm³
Answer:
m = 3.91 kg
Explanation:
Given that,
Mass of the object, m = 3.74 kg
Stretching in the spring, x = 0.0161 m
The frequency of vibration, f = 3.84 Hz
When the object is suspended, the gravitational force is balanced by the spring force as :
k = 2276.52 N/m
The frequency of vibration is given by :
m = 3.91 kg
So, the mass of the object is 3.91 kg. Hence, this is the required solution.