Answer:
The average velocity is 180 km/hr
Explanation:
Given;
initial velocity, u = 60 km per hour
final velocity, v = 120 km per hour
initial time = 1 hour
final time = 2 hour
Initial position = 60 km/h x 1 hour = 60 km
final position = 120 km/h x 2 hour = 240 km
The average velocity is given by;
Therefore, the average velocity is 180 km/hr
I believe gamma decay but i may be wrong
Answer:
37.125 m
Explanation:
Using the equation of motion
s=ut+0.5at^{2} where s is distance, u is initial velocity, t is time and a is acceleration
<u>Distance during acceleration</u>
Acceleration, a=\frac {V_{final}-V_{initial}}{t} where V_{final} is final velocity and V_{initial} is initial velocity.
Substituting 0.0 m/s for initial velocity and 4.5 m/s for final velocity, acceleration will be
a=\frac {4.5 m/s-0 m/s}{4.5 s}=1 m/s^{2}
Then substituting u for 0 m/s, t for 4.5 s and a for 1 m/s^{2} into the equation of motion
s=0*4.5+ 0.5*1*4.5^{2}=0+10.125
=10.125 m
<u>Distance at a constant speed</u>
At a constant speed, there's no acceleration and since speed=distance/time then distance is speed*time
Distance=4.5 m/s*6 s=27 m
<u>Total distance</u>
Total=27+10.125=37.125 m
Answer:
Current in outer circle will be 15.826 A
Explanation:
We have given number of turns in inner coil
Radius of inner circle
Current in the inner circle
Number of turns in outer circle
Radius of outer circle
We have to find the current in outer circle so that net magnetic field will zero
For net magnetic field current must be in opposite direction as in inner circle
We know that magnetic field is given due to circular coil is given by
For net magnetic field zero
So
Answer:
Sliding would be an uneven rhythm because Galloping and skipping has a constant flow of the same movement and same noise.
Explanation: