No. The moon always keeps the same side facing us. Its rotation and revolution periods are equal.
Answer:
A wet body has a relatively high concentration of water. When this is transferred to a towel, the large surface area of the towel fabric distributes the water molecules over a much greater surface area, so the relative concentration is lower.
Answer:
15.4 kg.
Explanation:
From the law of conservation of momentum,
Total momentum before collision = Total momentum after collision
mu+m'u' = V(m+m').................... Equation 1
Where m = mass of the first sphere, m' = mass of the second sphere, u = initial velocity of the first sphere, u' = initial velocity of the second sphere, V = common velocity of both sphere.
Given: m = 7.7 kg, u' = 0 m/s (at rest)
Let: u = x m/s, and V = 1/3x m/s
Substitute into equation 1
7.7(x)+m'(0) = 1/3x(7.7+m')
7.7x = 1/3x(7.7+m')
7.7 = 1/3(7.7+m')
23.1 = 7.7+m'
m' = 23.1-7.7
m' = 15.4 kg.
Hence the mass of the second sphere = 15.4 kg
Answer:
0.231 m/s
Explanation:
m = mass attached to the spring = 0.405 kg
k = spring constant of spring = 26.3 N/m
x₀ = initial position = 3.31 cm = 0.0331 m
x = final position = (0.5) x₀ = (0.5) (0.0331) = 0.01655 m
v₀ = initial speed = 0 m/s
v = final speed = ?
Using conservation of energy
Initial kinetic energy + initial spring energy = Final kinetic energy + final spring energy
(0.5) m v₀² + (0.5) k x₀² = (0.5) m v² + (0.5) k x²
m v₀² + k x₀² = m v² + k x²
(0.405) (0)² + (26.3) (0.0331)² = (0.405) v² + (26.3) (0.01655)²
v = 0.231 m/s