The answer is A track star speeding up as he sprints to the finish line.
Given the model from the question,
- The products are: N₂, H₂O and H₂
- The reactants are: H₂ and NO
- The limiting reactant is H₂
- The balanced equation is: 3H₂ + 2NO —> N₂ + 2H₂O + H₂
<h3>Balanced equation </h3>
From the model given, we obtained the ffolowing
- Red => Oxygen
- Blue => Nitrogen
- White => Hydrogen
Thus, we can write the balanced equation as follow:
3H₂ + 2NO —> N₂ + 2H₂O + H₂
From the balanced equation above,
- Reactants: H₂ and NO
- Product: N₂, H₂O and H₂
<h3>How to determine the limiting reactant</h3>
3H₂ + 2NO —> N₂ + 2H₂O + H₂
From the balanced equation above,
3 moles of H₂ reacted with 2 moles of NO.
Therefore,
5 moles of H₂ will react with = (5 × 2) / 3 = 3.33 moles of NO
From the calculation made above, we can see that only 3.33 moles of NO out of 4 moles given are required to react completely with 5 moles of H₂.
Thus, H₂ is the limiting reactant
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
The total amount of solute decreases.
Answer:
230hz
Explanation:
Hello,
To solve this question, we gave to use the relationship between velocity-frequency-wavelength to find the frequency in this question.
V = Fλ
V = velocity or speed of the wave
F = frequency of the wave
λ = wavelength of the wave
Data;
V = 414m/s
λ = 1.8m
f = ?
V = fλ
f = v/λ
f = 414/1.8
f = 230hz
The frequency of the wave is 230hz
Hertz is units for frequency. (waves per second)
wavelength = speed/frequency
if you're given the speed use that to calculate, if not then you can probably assume it's a wave of light and use the speed of light (3x10^8 m/s) to calculate.
wavelength = (3x10^8)/(1.28x10^17)
= 0.000000002 m
= 2.34 nm