Hm. This is an interesting problem.
Let's see if we can express each of these numbers in terms of x and make an algebra equation to help us solve.
Consecutive even numbers increase by 2.
Let's allow x to equal our first number.
Let's allow x + 2 to equal our 2nd number.
Let's allow x + 4 to equal our 3rd number.
When we add those together, their sum need to equal 50 more than the largest integer (our x + 4)
Let's set it up!
x + (x +2) + (x + 4) = (x + 4) + 50
Simplify!
3x + 6 = x + 54
Let's reorganize the left and right sides.
3x - x = 54 - 6
2x = 48
x = 24 (our 1st even number)
Now, let's check our answer!
24 + 26 + 28 = 78
78 - 50 = 28 Our highest integer.
The sum of consecutive integers 24, 26, 28 is 50 more than the highest integer.