Answer:
68.26% probability that a randomly selected full-term pregnancy baby's birth weight is between 6.4 and 8.6 pounds
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean and standard deviation , the zscore of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
What is the probability that a randomly selected full-term pregnancy baby's birth weight is between 6.4 and 8.6 pounds
This is the pvalue of Z when X = 8.6 subtracted by the pvalue of Z when X = 6.4. So
X = 8.6
has a pvalue of 0.8413
X = 6.4
has a pvalue of 0.1587
0.8413 - 0.1587 = 0.6826
68.26% probability that a randomly selected full-term pregnancy baby's birth weight is between 6.4 and 8.6 pounds
Answer:
to me the answer will be 5 raised to power 2
In short, for a vertical parabola, namely one whose independent variable is on the x-axis, usually is x², if the leading term coefficient is negative, the parabola opens downward, and its peak or vertex is at a maximum, check the picture below at the left-hand-side.
and when the leading term coefficient is positive, the parabola opens upwards, with a minimum, check the picture below at the right-hand-side.