the big number describes the number ratio in a chemical equation
so for example,
2H2 + O2 --> 2H2O means
2 moles of hydrogen reacts with one mole of oxygen to form 2 moles of water
and as you know, the small (subscript) number determines the number of atoms of that element in one molecule of a compound
so I believe that drawing a normal lewis structure ( O=O ) should be correct
Answer:
do you have any vocabulary to help you with this or no
Answer is: <span>
The reaction will not be spontaneous at any temperature.
</span>
<span>Gibbs free energy
(G) determines if reaction will proceed spontaneously.
ΔG = ΔH - T·ΔS.
ΔG - changes in Gibbs free energy.
ΔH - changes in enthalpy.
ΔS - changes in entropy.
T is temperature in Kelvins.
When ΔS < 0 (negative entropy change) and ΔH > 0
(endothermic reaction), the process is never spontaneous (ΔG> 0).</span>
A combustion reaction of an will generally produce CO2 and H20 -- carbon dioxide and water and/or an oxide
looking at the combustion material C2H2, you know that the end products will be CO2 and H20, so the question is how much of each will you get
well, look at the total amount of carbon atoms, 2 C2, which means a total of 4 carbon atoms in this reaction, since only CO2 has carbon atoms, that means there must be 4 CO2 as an end product and 4 CO2 will use up 4 of 5 O2 molecule leaving only 1 O2 molecule for the H2 reaction.
now O2 has a total of 2 oxygen molecules whereas H20 has only a single oxygen molecule, hence the end product must have 2 H20
check that the H atoms balance out on both sides
Answer:
Two electrons
Explanation:
According to the octet rule, atoms must bond to each other, sharing electrons among themselves in an attempt to complete their valence shell (last layer of the electrosphere). In other words, an atom becomes stable when it has 8 electrons in its valence shell.
Oxygen atoms have six electrons in their valence shell, so to achieve the stability suggested by the octet rule (eight electrons), these atoms share two electrons, forming one oxygen gas (O₂) molecule.