Answer:
Oceans, Fossil fuels, atmosphere
<span>The ideal gas law.
PV=nRT
pressure x volume = moles x Faraday's constant x Temp Kelvin (C+273)
Original data
Pressure 1 atmosphere
Volume 1 liter
Temp 25C = 298K
New data
Volume 0.5 liter
pressure X
Temp 260C = 533K
P1v1T1 = P2v2T2
plug and chug.
(1)(1)(293) = (x)(0.5)(533)
Solve for X, which is the new pressure. </span>
Answer:
carbon, hydrogen, and oxygen atoms
Explanation:
brainliest pls
Answer:
Summary. An increase in the number of gas molecules in the same volume container increases pressure. A decrease in container volume increases gas pressure. An increase in temperature of a gas in a rigid container increases the pressure
Answer & Explenation:
2H2 + O2 -> 2H20 is the balanced equation for the reaction of Hydrogen with Oxygen to form water so
If you have 32g of O2 this is a simple Dimensional analysis problem
32g O2 x 36.03056g H20/31.9988g O2 this way the O2 cancels out and you are left with just the H2O so your raw answer would be 36.0319112, then if your instructor requires a significant figure answer that would be to 2 significant figures the information you were given 32g O2, so as above 36g or Water are produced. Just a different way to view and solve the problem with the balanced equation so you can see the way everything relates to everything else. the molar masses of O2 and H2O are simply found my adding up 2 Oxygens 15.9994g x2 = 31.9988g and H2O = 2(1.00794) + 15.9994 = 18.01258 but you then have to multiply that by 2 because the reaction states you get 2 mols in the reaction so that is where I came up with the 36.03056g for the solution. Hope this helps. Dimensional Analysis is and can be one of the best ways to solve these problems, because not always are you going to be dealing with 1:2 ratios.