Answer:
Physical properties can be observed, described, and measured without changing the material. ... To find the volume of a solid, pour liquid in a graduated cylinder and let a solid object sink in the liquid and measure how much volume is in the solid
Answer:
Explained below.
Explanation:
The difference between the two of them will be considered from their electrostatic potential maps.
First of all the major difference is that ammonia molecule(NH3) has a lone lone pair of electron on the N atom.
Due to the this lone pair of electron on the N - atom of ammonia, it's bond angle will be slightly lesser than that of ammonium ion.
Therefore, In the electrostatic potential map of NH3, the charge distribution will not be symmetrical for the fact that there is electron rich N atom and so the N atom will be more red than the 3 hydrogen atoms (H atoms).
Whereas, the electrostatic potential map of NH4+ (ammonium ion) will be symmetrical due to the even/symmetrical distribution of all the 4 hydrogen atoms surrounding the central Nitrogen atom.
Also, the Nitrogen atom here in ammonium ion will have a lower electron density than the Nitrogen atom that's present in ammonia molecule due to the bonding existing between the lone pair electron and the Hydrogen atom
It's asking about air currents and temperature and how they affect each other. Since the land is hotter than the water during the day, it will create different pressures that force air to move. <span>The wind will blow from the higher pressure over the water to lower pressure over the land </span>causing<span> the </span><span>sea breeze. The opposite happens at night, and that causes a land breeze.
</span>
Answer:
NaNO₃ and AgCl are the two products that can be formed.
Sodium nitrate, an aqueous solution and a solid silver chloride (precipitate)
Explanation:
We determine the dissociation of both salts
AgNO₃ (aq) → Ag⁺ (aq) + NO₃⁻ (aq)
NaCl (aq) → Na⁺ (aq) + Cl⁻ (aq)
We make the ionic equation:
Ag⁺ (aq) + NO₃⁻ (aq) + Na⁺ (aq) + Cl⁻ (aq) → NaNO₃(aq) + AgCl (s) ↓