Answer:
The ΔH is 5.5 kJ/mol and the reaction is endothermic.
Explanation:
To calculate the ∆H (heat of reaction) of the combustion reaction, that is, the heat that accompanies the entire reaction, you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient ( number of molecules of each compound participating in the reaction) and finally subtract them:
Combustion enthalpy = ΔH = ∑H products - ∑Hreactants
In this case:
ΔH = 15.7 kJ/mol - 10.2 kJ/mol= 5.5 kJ/mol
An endothermic reaction is one whose enthalpy value is positive, that is, the system absorbs heat from the environment (ΔH> 0).
<u><em>The ΔH is 5.5 kJ/mol and the reaction is endothermic.</em></u>
Explanation:
Dehydrohalogenation reactions occurs as elimination reactions through the following mechanism:
Step 1: A strong base(usually KOH) removes a slightly acidic hydrogen proton from the alkyl halide.
Step 2: The electrons from the broken hydrogen‐carbon bond are attracted toward the slightly positive carbon (carbocation) atom attached to the chlorine atom. As these electrons approach the second carbon, the halogen atom breaks free.
However, elimination will be slower in the exit of Hydrogen atom at the C2 and C3 because of the steric hindrance by the methyl group.
Elimination of the hydrogen from the methyl group is easier.
Thus, the major product will A
Answer:
The answer is <u>applied research</u>
Explanation:
Pure research becomes <u>applied research</u> when scientists develop a hypothesis based on the data and try to solve a specific problem.
This is because the pure research try to understand, predict or explain the behavior of different phenomena <em>(the data)</em> while the applied research try to develop new technologies or methods (<em>hypothesis)</em> to take part, intervene and/or create changes on these phenomena and solve a <em>specific problem.</em>
Answer:
NH3>H2O>Cl-
Explanation:
The given wavelengths of maximum absorption for each complex can be used to estimate the magnitude of field splitting of the respective ligands as shown in the image attached. The field splitting is reported in the unit kilojoule per mole (KJmol-1).
It can be seen from the calculation in the image attached that ammonia shows the highest crystal field splitting followed by water and lastly the chloride anion. This corresponds to the respective positions of these species in the spectrochemical series. Water and the chloride ion are weak field ligands.