Answer : The rate of effusion of sulfur dioxide gas is 52 mL/s.
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.
or,
..........(1)
where,
= rate of effusion of nitrogen gas =
= rate of effusion of sulfur dioxide gas = ?
= molar mass of nitrogen gas = 28 g/mole
= molar mass of sulfur dioxide gas = 64 g/mole
Now put all the given values in the above formula 1, we get:
Therefore, the rate of effusion of sulfur dioxide gas is 52 mL/s.
C(HClO) = 0,3 M.
<span>V(HClO) = 200 mL = 0,2 L.
n(HClO) = </span>c(HClO) · V(HClO).
n(HClO) = 0,06 mol.<span>
c(KClO</span>) =
0,2 M.
<span>V(KClO) = 0,3 L.
n(KClO) = 0,06 mol.
V(buffer solution) = 0,2 L + 0,3 L = 0,5 L.
ck</span>(HClO) = 0,06 mol ÷ 0,5 L = 0,12 M.
cs(KClO) = 0,06 mol ÷ 0,5 L = 0,12 M.<span>
Ka(HClO</span>) =
2,9·10⁻⁸.<span>
This is buffer solution, so use Henderson–Hasselbalch
equation:
pH = pKa + log(cs</span> ÷ ck).<span>
pH = -log(</span>2,9·10⁻⁸) + log(0,12 M ÷ 0,12 M).<span>
pH = 7,54 + 0.
pH = 7,54</span>
Answer:
1.8g
Explanation:
Initial volume = 43.5ml
Final volume = 49.4ml
Mass = 10.88g
Density = ?
Volume = Final volume - initial volume
= 49.4 - 43.5
= 5.9ml
Density = Mass/volume
Density = 10.88/5.9
= 1.8g/ml
As the gas is heated, the particles will begin to move faster. Likewise if you start to cool a gas, the particles will move slower. Because the gas remains at a constant pressure and volume, the particles cannot spread out so they simply move around the container even faster.
Hope this helps :)