Answer:
D.
Explanation:
But this just happen for big stars, like more than 20x the Sun mass.
Shortly: A nebula is a cloud of gas and dust, the material starts to be acummuleted and became a protostar (is like a big planet, almost a star). With enought mass this is a star, burn hydrogen and transform it in Helium.
This occurs in Main Sequence, is about almost all the life time of a star. Then starts the lack of hydrogen. Gravity compress everything, pressure goes up and heat all. Too much energy, Helium get burned and the star grews fast, became a Red Giant. Time pass and the fuel is over, no more making fusion, gravity compress the star, too much strenght, colapses, neutron star.
If it have pretty mass, ok. If have more than like 2x Sun mass, became a blackhole.
Force = Work/distance
Force = 150/10
= 15 Newtons
Force = 15 Newtons
Therefore, 15 newtons of force is applied to the body when 150 joules of work
is done in displacing the body through a distance of 10m in the direction of the force.
Answer:
(a) 1462.38 m/s
(b) 2068.13 m/s
Explanation:
(a)
The Kinetic energy of the atom can be given as:
K.E = (3/2)KT
where,
K = Boltzman's Constant = 1.38 x 10⁻²³ J/k
K.E = Kinetic Energy of atoms = 343 K
T = absolute temperature of atoms
The K.E is also given as:
K.E = (1/2)mv²
Comparing both equations:
(1/2)mv² = (3/2)KT
v² = 3KT/m
v = √[3KT/m]
where,
m = mass of Helium = (4 A.M.U)(1.66 X 10⁻²⁷ kg/ A.M.U) = 6.64 x 10⁻²⁷ kg
v = RMS Speed of Helium Atoms = ?
Therefore,
v = √[(3)(1.38 x 10⁻²³ J/K)(343 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 1462.38 m/s</u>
(b)
For double temperature:
T = 2 x 343 K = 686 K
all other data remains same:
v = √[(3)(1.38 x 10⁻²³ J/K)(686 K)/(6.64 x 10⁻²⁷ kg)]
<u>v = 2068.13 m/s</u>
<span>the ratio of the force produced by a machine to the force applied to it, used in assessing the performance of a machine. I would say the answer is D, but i'm not sure. :)</span>