Answer:
if you are working with hazardous materials.
Explanation:
A properly operating and correctly used fume hood can reduce or eliminate exposure to volatile liquids, dusts, and mists. It is advisable to use a laboratory hood when working with all hazardous substances.
Answer:
O2 is a covalent substance while NaCl is an ionic substance
Explanation:
In O2 molecule, the bond is between 2 oxygen atoms which are non - metals. Thus, this is a covalent bond since it involves 2 non metals.
Whereas, for the NaCl molecule, the bond is between a metal sodium (Na) and a non metal Chloride(Cl) and thus we can say this is an ionic bond.
Thus the difference is that O2 is a covalent substance while NaCl is an ionic substance.
Heat energy is required.
In distillation, the solution is first heated, where heat energy is required, such as using a bunsen burner.
When the solution is heated, the water may reach its boiling point and evaporate. However, salt does not. When water molecules evaporates, it travels through a condenser that cools it down into liquid again. Therefore we get pure water. Salt is also obtained in the original beaker.
Therefore to first start this process, heat energy is required.
Answer:
The final temperature was 612 °C
Explanation:
Charles's law relates the volume and temperature of a certain amount of ideal gas, maintained at a constant pressure, using a constant of direct proportionality. In this law, Charles says that at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. That is, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:
When you want to study two different states, an initial and a final one of a gas and evaluate the change in volume as a function of temperature or vice versa, you can use the expression:
In this case:
- V1= 5.76 L
- T1= 22 °C= 295 °K (Being 0°C=273°K)
- V2=17.28 L
- T2=?
Replacing:
Solving:
T2= 885 °K = 612 °C
<u><em>The final temperature was 612 °C</em></u>