Here we have to calculate the heat required to raise the temperature of water from 85.0 ⁰F to 50.4 ⁰F.
10.857 kJ heat will be needed to raise the temperature from 50.4 ⁰F to 85.0 ⁰F
The amount of heat required to raise the temperature can be obtained from the equation H = m×s×(t₂-t₁).
Where H = Heat, s =specific gravity = 4.184 J/g.⁰C, m = mass = 135.0 g, t₁ (initial temperature) = 50.4 ⁰F or 10.222 ⁰C and t₂ (final temperature) = 85.0⁰F or 29.444 ⁰C.
On plugging the values we get:
H = 135.0 g × 4.184 J/g.⁰C×(29.444 - 10.222) ⁰C
Or, H = 10857.354 J or 10.857 kJ.
Thus 10857.354 J or 10.857 kJ heat will be needed to raise the temperature.
Answer:
The attached figure shows the structure of dimethyl terephthalate.
Explanation:
Dimethyl terephthalate is a compound whose formula is C6H4 (COOCH3) 2. It is a diester produced from terephthalic acid and methanol. It is characterized by being a white solid. Another method for the preparation is from p-xylene and methanol, which is characterized by having an oxidation and an esterification.
Answer:
This question appears incomplete
Explanation:
However, an alpha hydrogen is the hydrogen that is found on the alpha, α-carbon in an organic molecule. Alpha carbon is referred to the first carbon that is attached to a functional group. Generally, compounds that do not have alpha carbon do not have alpha hydrogen. For example, first member of all functional groups do not usually have alpha carbon and hence do not have alpha hydrogen.
Also, Alkanes, alkenes and alkynes do not have also
Answer:
0.846 moles.
Explanation:
- This is a stichiometric problem.
- The balanced equation of complete combustion of butane is:
C₄H₁₀ + 6.5 O₂ → 4 CO₂ + 5 H₂O
- It is clear from the stichiometry of the balanced equation that complete combustion of 1.0 mole of butane needs 6.5 moles of O₂ to produce 4 moles of CO₂ and 5 moles of H₂O.
<u><em>Using cross multiplication:</em></u>
- 1.0 mole of C₄H₁₀ reacts with → 6.5 moles of O₂
- ??? moles of C₄H₁₀ are needed to react with → 5.5 moles of O₂
- The number of moles of C₄H₁₀ that are needed to react with 5.5 moles of O₂ = (1.0 x 5.5 moles of O₂) / (6.5 moles of O₂) = 0.846 moles.