Metals have a low electron affinity- a less likely chance to gain electrons because they want to give up their valence electrons rather than gain electrons, which require more energy than necessary.
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:
Moles of HI = 0.550 moles
Volume of container = 2.00 L
For the given chemical equation:
<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of for above equation follows:
We are given:
Putting values in above expression, we get:
Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
The major alkene product that results when n,n-dimethylhexan-2-amine undergoes cope elimination is hexene or hex-1-ene.
The reaction in which an amine is oxidize to an intermediate called an N-oxide which , when heated , acts as base in an intramolecular elimination reaction. The oxidation of tertiary amine into N-oxide is called cope reaction.
This elimination gives the less substituted alkene along with more substituted alkene which is Zaitsev product.
Example: Cope elimination of n,n-dimethylhexan-2-amine form hexene.
To learn more about alkene ,
brainly.com/question/13910028
#SPJ4
The ansewer is Boyle’s law