The answer is 1. CO. A gram-molecular mass is defined as mass in grams numerically equal to the molecular weight of a substance or the sum of all the atomic masses in its molecular formula. Since CO2 and CO has both carbon and oxygen, the gram-molecular mass does not change. For a compound with carbon and oxygen, the molecular mass comes respectively from 12 (atomic mass of carbon) + (2 × 16) (atomic mass of oxygen), which is 44 g.
Answer: In the chemical formula for water, the subscript for hydrogen is 2. Notice that the 2 is smaller and written slightly below the H and O. It is called a subscript because it is written ("script") "below" ("sub") the preceding letter.
Explanation:
Answer:
B
Explanation:
"I think my bike is making a scraping noise because the bearings are not lubricated."
Answer:
16 °C
Explanation:
Step 1: Given data
- Provided heat (Q): 811.68 J
- Mass of the metal (m): 95 g
- Specific heat capacity of the metal (c): 0.534 J/g.°C
Step 2: Calculate the temperature change (ΔT) experienced by the metal
We will use the following expression.
Q = c × m × ΔT
ΔT = Q/c × m
ΔT = 811.68 J/(0.534 J/g.°C) × 95 g = 16 °C
Answer:
22.9 Liters CO(g) needed
Explanation:
2CO(g) + O₂(g) => 2CO₂(g)
? Liters 32.65g
= 32.65g/32g/mol
= 1.02 moles O₂
Rxn ratio for CO to O₂ = 2 mole CO(g) to 1 mole O₂(g)
∴moles CO(g) needed = 2 x 1.02 moles CO(g) = 2.04 moles CO(g)
Conditions of standard equation* is STP (0°C & 1atm) => 1 mole any gas occupies 22.4 Liters.
∴Volume of CO(g) = 1.02mole x 22.4Liters/mole = 22.9 Liters CO(g) needed
___________________
*Standard Equation => molecular rxn balanced to smallest whole number ratio coefficients is assumed to be at STP conditions (0°C & 1atm).