4^4 * 4^(-9) = 4^(4-9) = 4^(-5) or 1/(4^5)
Answer:
0.96
Step-by-step explanation:
try
Answer:
factors
Step-by-step explanation:
Answer:
Step-by-step explanation:
Using the addition formulae for cosine
cos(x ± y) = cosxcosy ∓ sinxsiny
---------------------------------------------------------------
cos(120 + x) = cos120cosx - sin120sinx
= - cos60cosx - sin60sinx
= - cosx - sinx
squaring to obtain cos² (120 + x)
= cos²x + sinxcosx + sin²x
--------------------------------------------------------------------
cos(120 - x) = cos120cosx + sin120sinx
= -cos60cosx + sin60sinx
= - cosx + sinx
squaring to obtain cos²(120 - x)
= cos²x - sinxcosx + sin²x
--------------------------------------------------------------------------
Putting it all together
cos²x + cos²x + sinxcosx + sin²x + cos²x - sinxcosx + sin²x
= cos²x + cos²x + sin²x
= cos²x + sin²x
= (cos²x + sin²x) =
Answer:
Function rule is option c.