Answer:
X 154
Check solution in explanation
Explanation:
Average atomic mass = ( mass 1× abudance) + ( mass 2× abudance)+ ( mass 3× abudance) / 100
(149×13.8)+(152×44.9) +(154×41.3)/100
2056.2 + 6824.8 + 6360.2/100
=152.412
Using ideal gas equation,
P\times V=n\times R\times T
Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=1 atm
T=273 K
R=0.0821 atm L mol ⁻¹
Mass of HCl given= 49.8 g
Molar mass of HCl given=36.41
Number of moles of gas, n= \frac{Given mass of the substance}{Molar mass of the substance}
Number of moles of gas, n= \frac{49.8}{36.46}
Number of moles of gas, n= 1.36
Putting all the values in the above equation,
V=\frac{1.36\times 0.0821\times 273}{1}
V=30.6 L
So the volume will be 30.6 L.
According to avogadro constant, the number of units in one mole of any substance contain 6.022 x10 ^23 atoms
therefore the number of o atoms in one mole of CuSO4 = 6.022 x 10 ^ 23
Explanation:
Depression in Freezing point
= Kf × i × m
where m is molality , i is Van't Hoff factor, m = molality
Since molality and Kf remain the same
depression in freezing point is proportional to i
i= 2 for CuSO4 ( CuSO4----------> Cu+2 + SO4-2
i=1 for C2h6O
i= 3 for MgCl2 ( MgCl2--------> Mg+2+ 2Cl-)
So the freezing point depression is highest for MgCl2 and lowest for C2H6O
so freezing point of the solution = freezing point of pure solvent- freezing point depression
since MgCl2 has got highest freezing point depression it will have loweest freezing point and C2H6O will have highest freezing point
Answer:
Approximately 56.8 liters.
Assumption: this gas is an ideal gas, and this change in temperature is an isobaric process.
Explanation:
Assume that the gas here acts like an ideal gas. Assume that this process is isobaric (in other words, pressure on the gas stays the same.) By Charles's Law, the volume of an ideal gas is proportional to its absolute temperature when its pressure is constant. In other words
,
where
- is the final volume,
- is the initial volume,
- is the final temperature in degrees Kelvins.
- is the initial temperature in degrees Kelvins.
Convert the temperatures to degrees Kelvins:
.
.
Apply Charles's Law to find the new volume of this gas:
.