Answer:
W = 1,307 10⁶ J
Explanation:
Work is the product of force by distance, in this case it is the force of gravitational attraction between the moon (M) and the capsule (m₁)
F = G m₁ M / r²
W = ∫ F. dr
W = G m₁ M ∫ dr / r²
we integrate
W = G m₁ M (-1 / r)
We evaluate between the limits, lower r = R_ Moon and r = ∞
W = -G m₁ M (1 /∞ - 1 / R_moon)
W = G m1 M / r_moon
Body weight is
W = mg
m = W / g
The mass is constant, so we can find it with the initial data
For the capsule
m = 1000/32 = 165 / g_moon
g_moom = 165 32/1000
.g_moon = 5.28 ft / s²
I think it is easier to follow the exercise in SI system
W_capsule = 1000 pound (1 kg / 2.20 pounds)
W_capsule = 454 N
W = m_capsule g
m_capsule = W / g
m = 454 /9.8
m_capsule = 46,327 kg
Let's calculate
W = 6.67 10⁻¹¹ 46,327 7.36 10²² / 1.74 10⁶
W = 1,307 10⁶ J
Answer:
The answer to your question is 1.35 Watts
Explanation:
Data
Work = W = 5 J
time = t = 3.7 s
Power = P = ?
Formula
Power is a rate in which work is done or energy is transferred over time
P =
Substitution
Result
P = 1.35 W
Resistance can be calculated by Ohm's law
As per ohm's law we will have
here we will have
voltage = 220 volts
current = 10 A
So by the above formula we will have
So resistance of the bulb is 22 ohm.
Answer:
option D is the correct option
Must always remain constant
Explanation:
According to their law of conservation of energy :it states that in a closed system,the total mechanical energy is always constant although energy may change from one form to another. e. g from potential energy to kinetic energy
Answer:
(a) Current flowing through truck battery is 180 A
(b) Time taken in calculator is 333.33 s
Explanation:
(a) Given:
The charge on the truck battery,q = 720 C
Time, t = 4.00 s
Consider I be the current flowing through truck battery.
The relation between current, charge and time is:
I = q/t
Substitute the suitable values in the above equation.
I = 180 A
(b) Given:
The charge on the calculator,q = 7.00 C
The current flowing through calculator, I = 0.3 mA = 0.3 x 10⁻³ A
Consider t be the time.
The relation between current, charge and time is:
t = q/I
Substitute the suitable values in the above equation.
I = 333.33 s