Answer:
filtering
Explanation:
you're pouring the mixture through muslin cloth to keep the particles and bigger peaces out of the soap.
Answer:
+3
Explanation:
The oxygen all have a -2 oxidation state. (peroxides are exceptions)
The chemical structure is symmetrical. Both carbon are equivalent.
2 (oxidation state of carbon) + 4 (oxidation state of oxygen) = charge of ion.
2 (oxidation state of carbon) + 4 (-2) = -2
oxidation state of carbon = +3
Answer:
Explanation:
a. the salt produced would be Mg3N2(magnesium nitride)
b. magnesium loses 2 electron to form Mg2+ ion and nitrogen gains 3 electron to form n3-
when several of these ions come together 3 Mg2+ ion combine with 2 n3- ion to form Mg3N2 thus Mg getting six electron from nitrogen to form a ionic bond.
c. the reaction is not balanced Mg + N2 = Mg3n2
to make it balanced the reaction should be 3 Mg + N2 = Mg3N2.
the reaction was not balanced before because the number of Mg on both side of the reaction was not equal.
d. magnesium nitrate has formula Mg(NO3)2 is formed when Mg combines with nitrogen and oxygen Mg + N2 + o2
<h3>
Answer:</h3>
498 kj/mol
<h3>
Explanation:</h3>
- Chemical reactions occur as a result of bond breaking and bond formation.
- The bonds in reactants are broken and atoms are rearranged to form new bonds.
- During bond breaking energy is absorbed to break the bonds of reactants while bond formation involves the release of energy during the formation of new bonds.
In our case;
In 1 mole of the Oxygen molecule, there is one O=O bond
Energy absorbed to break O=O is 498 kJ/mol
Therefore, the ΔH required to break all the bonds in one mole of Oxygen(O₂) molecules is 498kJ/mol.
Note that, bond breaking is endothermic since energy is absorbed from the surroundings.
<u>Given:</u>
Mass of Ba = 1.50 g
Mass of H2O = 100.0 g
Initial temp T1 = 22 C
Final Temp T2 = 33.1 C
specific heat c = 4.18 J/g c
<u>To determine:</u>
The reaction enthalpy
<u>Explanation:</u>
The heat released during the reaction is:
q = - mc(T2-T1) = - (100+1.5) g *4.18 J/g C * (33.1-22) C = -4709.4 J
# moles of Ba = Mass of Ba/Atomic mass of Ba = 1.5 g/137 g.mol-1 = 0.0109 moles
ΔH = q/mole = - 4709.4 J/0.0109 moles = - 432 kJ/mol
Ans : The enthalpy change for the reaction is -432 kJ/mol