Answer:
A. Mass
Explanation:
Inertia of an object is the resistance of the object to any change in its state of motion: it means that if an object is at rest, it tends to stay at rest for inertia (unless a net force acts on it), and if it is moving, it tends to continue moving with the same velocity, for inertia.
The inertia also describes how difficult it is to stop/accelerate an object, and it is directly proportional to the mass of the object: in fact, the larger the mass of an object, the more difficult it is to change its state of motion, and this means it has greater inertia.
Water is a very unique substance because it can exist in all three phases of matter (solid, liquid, gas) within the normal temperature ranges found on Earth. When one observes the phase of matter of water, one observes a property of matter.
Answer:
1470kgm²
Explanation:
The formula for expressing the moment of inertial is expressed as;
I = 1/3mr²
m is the mass of the body
r is the radius
Since there are three rotor blades, the moment of inertia will be;
I = 3(1/3mr²)
I = mr²
Given
m = 120kg
r = 3.50m
Required
Moment of inertia
Substitute the given values and get I
I = 120(3.50)²
I = 120(12.25)
I = 1470kgm²
Hence the moment of inertial of the three rotor blades about the axis of rotation is 1470kgm²
-- The net force on the box is 2N to the left.
-- The box will move to the left and accelerate to the left.
-- F=ma . a=F/m . a=(2N)/(4kg).
a = 0.5 m/s^2 to the left.