The temperature of the wind as that decreases the volume and the pressure of the balloon to the given values is 14.09°C.
<h3>What is Combined gas law?</h3>
Combined gas law put together both Boyle's Law, Charles's Law, and Gay-Lussac's Law. It states that "the ratio of the product of volume and pressure and the absolute temperature of a gas is equal to a constant.
It is expressed as;
P₁V₁/T₁ = P₂V₂/T₂
Given the data in the question;
- Initial volume V₁ = 14.5L
- Initial pressure P₁ = 0.980atm
- Initial temperature T₁ = 20.0°C = 293.15K
- Final pressure P₂ = 740.mmHg = 0.973684atm
We substitute our given values into the expression above.
P₁V₁/T₁ = P₂V₂/T₂
( 0.980atm × 14.5L )/293.15K = ( 0.973684atm × 14.3L )/T₂
14.21Latm / 293.15K = 13.92368Latm / T₂
14.21Latm × T₂ = 13.92368Latm × 293.15K
14.21Latm × T₂ = 4081.72679LatmK
T₂ = 4081.72679LatmK / 14.21Latm
T₂ = 287.24K
T₂ = 14.09°C
Therefore, the temperature of the wind as that decreases the volume and the pressure of the balloon to the given values is 14.09°C.
Learn more about the combined gas law here: brainly.com/question/25944795
#SPJ1
Polar bears float on ice floes to hunt for food.
Answer:
2.
3.
Explanation:
Hello there!
2. In this case, we can evidence the problem by which volume and temperature are involved, so the Charles' law is applied to:
Thus, considering the temperatures in kelvins and solving for the final volume, V2, we obtain:
Therefore, we plug in the given data to obtain:
3. In this case, it is possible to realize that the 3.7 moles of neon gas are at 273 K and 1 atm according to the STP conditions; in such a way, considering the ideal gas law (PV=nRT), we can solve for the volume as shown below:
Therefore, we plug in the data to obtain:
Best regards!
B)a force pushed the rock layers after they were formed
Given the equation N=O/P, solve for P by multiplying the left and right by P/N:
N * P/N = O/P * P/N
P = O/N