pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
Explanation:
the tip of a growing plant contains special rapidly diving cells called apical meristem ,these cells are responsible for increase in the length of the plant . if we cut out these cells ,length growth of the plant will be stunned as these cells are not present anyplace else.
Answer:
D
Explanation:
I believe the answer is D.
1,1,2 & single replacement reaction
Answer:
HCI(aq)+CH3COONa(s) ----> CH3COOH(aq)+NaCl(s)
NaOH(aq)+CH3COOH(aq) ----> CH3COONa(s)+H2O(l)
Explanation:
A buffer is a solution that resists changes in acidity or alkalinity. A buffer is able to neutralize a little amount of acid or base thereby maintaining the pH of the system at a steady value.
A buffer may be an aqueous solution of a weak acid and its conjugate base or a weak base and its conjugate acid.
The equations for the neutralizations that occurred upon addition of HCl or NaOH are;
HCI(aq)+CH3COONa(s) ----> CH3COOH(aq)+NaCl(s)
NaOH(aq)+CH3COOH(aq) ----> CH3COONa(s)+H2O(l)