The number of cycles of the periodic function is 3.75 cycles if the period of a periodic function is 8 s option (G) 3.75 is correct.
<h3>What is a function?</h3>
It is defined as a special type of relationship, and they have a predefined domain and range according to the function every value in the domain is related to exactly one value in the range.
It is given that:
The period of a periodic function is 8 s
From the question:
8n = 30
n = 30/8
n = 3.75 cycles
Thus, the number of cycles of the periodic function is 3.75 cycles if the period of a periodic function is 8 s option (G) 3.75 is correct.
Learn more about the function here:
brainly.com/question/5245372
#SPJ1
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
PART 1:55-21=35
35/60=<span>.58333
360</span>×<span>.58333 =210 DEGREES
</span><span>210*pi/180 = 3.665 RADIANS
PART 2: </span><span>(pi) x 2r x .58333
</span><span>3.14 x 12 x .58333 = 21.98 in
PART 3: </span><span>5π inches = 5 x 3.14 = 15.708 inches / 6 in radius = 2.618 radians
PART 4: </span><span>2.618 radians * 180/pi = 150° </span>
<span> x coordinate = 6(cos 150°) = -5.196 </span>
<span> y coordinate = 6(sin 150°) = 3 </span>
<span> the coordinates would be (-5.196, 2)</span>
Step-by-step explanation:
base is 12, hypotenuse is 20
so X² is h²-b²
so X=16
55.04 is 256% of 21.5
Hope it helps and hope its right...---