That's called the "normal" to the surface at that point.
Answer:
The kinetic energy of the merry-go-round is .
Explanation:
Given:
Weight of the merry-go-round,
Radius of the merry-go-round,
the force on the merry-go-round,
Acceleration due to gravity,
Time given,
Mass of the merry-go-round is given by
Moment of inertial of the merry-go-round is given by
Torque on the merry-go-round is given by
The angular acceleration is given by
The angular velocity is given by
The kinetic energy of the merry-go-round is given by
Hey there!
There's many ways to do it - like melting and evaporating.
For example, we'll use water. Plain old water in a water bottle. Right now, it's in its liquid state of matter, but say you put it in the freezer for an hour. That would change its state of matter to solid, since it would be solid ice. Now, if you were to put it out in the sun on a blazing hot day for a couple of hours, it would evaporate and become water vapor, a gas. Lastly, if you can cool that water vapor it becomes a liquid again.
Hope this helps!
I'm guessing that you mean like this:
-- The ruler is held with zero at the bottom, and the centimeter markings
increase as you go up the ruler.
-- You place your fingers with the ruler and the zero mark between them.
-- The number where you catch the ruler is the distance it has fallen.
Then, all we have to find is the time it takes for the ruler to fall 11.3 cm .
Here's the formula for the distance an object falls from rest
in a certain time:
Distance = (1/2) (gravity) (time)²
On Earth, the acceleration of gravity is 9.8 m/s².
So we can write ...
11.2 cm = (1/2) (9.8 m/s²) (time)²
or
0.112 meter = (4.9 m/s²) (time)²
Divide each side
by 4.9 m/s² : (0.112 m) / (4.9 m/s²) = time²
(0.112 / 4.9) sec² = time²
Square root
each side: time = √(0.112/4.9 sec²)
= √ 0.5488 sec²
= 0.74 second (rounded)