Answer:
(a) the high of a hill that car can coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h is 47.6 m
(b) thermal energy was generated by friction is 1.88 x J
(C) the average force of friction if the hill has a slope 2.5º above the horizontal is 373 N
Explanation:
given information:
m = 750 kg
initial velocity, = 110 km/h = 110 x 1000/3600 = 30.6 m/s
initial height, = 22 m
slope, θ = 2.5°
(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h?
according to conservation-energy
EP = EK
mgh =
gh =
h =
= 47.6 m
(b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction?
thermal energy = mgΔh
= mg (h - )
= 750 x 9.8 x (47.6 - 22)
= 188160 Joule
= 1.88 x J
(c) What is the average force of friction if the hill has a slope 2.5º above the horizontal?
f d = mgΔh
f = mgΔh / d,
where h = d sin θ, d = h/sinθ
therefore
f = (mgΔh) / (h/sinθ)
= 1.88 x /(22/sin 2.5°)
= 373 N
Answer:
Electrons are negatively charged, and so are attracted to the positive end of a battery and repelled by the negative end. So when the battery is hooked up to something that lets the electrons flow through it, they flow from negative to positive.
Explanation:
Answer:
Explanation:
The fish falls from vertical rest in a time of
t = √(2h/g) = √(2(2.27)/9.81) = 0.68 s
v = d/t = 5.6 / 0.68 = 8.2 m/s
Answer:
Explanation:
velocity of projection, vo = 381 m/s
angle of projection, θ = 73.5°
The formula for the range is
R = 8067.4 m
Range in shorten by 34.1 %
So, the new range is
R' = 8067.4 - 34.1 x 8067.4/100
R' = 5316.4 m