As consecutive odd numbers differ by two (example: 3, 5, 7), the first odd number can be expressed as 2n + 1, the next can be found by adding two to the first to get 2n + 1 + 2 which simplifies to 2n + 3. Finally the expression for the third consecutive odd integer can be found by adding two to the previous, 2n + 3, to get 2n + 5. Adding these three together and setting them equal to your sum gets the equation
2n + 1 + 2n + 3 + 2n + 5 = 63
Combine like terms and solve For n.
Once you have n, you must substitute it back into your three expressions (2n + 1, 2n + 3, 2n + 5) to find the three odd integers.
Hope this helps :)
Answer:
Step-by-step explanation:
We want to select all the terms that are not considered to be like terms with .
The terms that are like terms with must have .
It doesn't matter the coefficient.
So we can easily see that all the following are not like terms with :
Answer:
4x+3
How: -2x - (-6x) = 4
3 cannot be added there you go
Answer:
You are rocking this... This is correct! :D
Step-by-step explanation:
Please give me brainliest :)