Answer:
Inertia = angular momentum / angular velocity
Answer:
a. 32.67 rad/s² b. 29.4 m/s²
Explanation:
a. The initial angular acceleration of the rod
Since torque τ = Iα = WL (since the weight of the rod W is the only force acting on the rod , so it gives it a torque, τ at distance L from the pivot )where I = rotational inertia of uniform rod about pivot = mL²/3 (moment of inertia about an axis through one end of the rod), α = initial angular acceleration, W = weight of rod = mg where m = mass of rod = 1.8 kg and g = acceleration due to gravity = 9.8 m/s² and L = length of rod = 90 cm = 0.9 m.
So, Iα = WL
mL²α/3 = mgL
dividing through by mL, we have
Lα/3 = g
multiplying both sides by 3, we have
Lα = 3g
dividing both sides by L, we have
α = 3g/L
Substituting the values of the variables, we have
α = 3g/L
= 3 × 9.8 m/s²/0.9 m
= 29.4/0.9 rad/s²
= 32.67 rad/s²
b. The initial linear acceleration of the right end of the rod?
The linear acceleration at the initial point is tangential, so a = Lα = 0.9 m × 32.67 rad/s² = 29.4 m/s²
Salutations!
If Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, _______________ is being done.
<span>If Jerome is swinging on a rope and transferring energy from gravitational potential energy to kinetic energy, work is being done. Energy being transferred and the object begins to move is called work.
Thus, your answer is option B.
Hope I helped (:
Have a great day!</span>
Answer:
Facilitated diffusion and active transport both utilize proteins to transport substances across membranes. Differences between active transport and facilitated diffusion 1. Active transport requires an input of energy, usually ATP, while facilitated transport does not.
"Voltage" is the "pressure" that makes electrons want to leave where they are
and head in some direction, if there's conducting material in that direction.
"Current" is the rate at which they all migrate in that direction.