Answer:
Most substituted alkene is produced as a major product
Explanation:
- Dehydration of 3-methyl-2-butanol proceeds through E1 mechanism to form alkenes.
- Most substituted alkene is produced as major product because of presence of highest number of hyperconjugative hydrogen atoms corresponding to the produced double bond (Saytzeff product).
- Here, a H-shift also occurs in one of the intermediate step during dehydration to produce more stable tertiary carbocation.
- Reaction mechanism has been shown below.
Answer:
Correct answer is A.
Explanation:
Frequency is the number of oscillations that a wave have per unit time. Since time is measured in seconds, the wave with the highest frequency must register the highest number of oscillation per second. Hence, correct answer is A.
Answer:
-290KJ/mol
Explanation:
ΔHrxn = ΔHproduct - ΔHreactant
ΔHrxn= 4ΔHH3PO4 - {6ΔHH2O + ΔHP4O10}
ΔHrxn = 4(-1279) - [6(-286) - 3110]
= -5116 -(-1716-3110)
= -5116-(-4826)
= -5116 + 4826 = -290KJ/mol
Answer:
endothermic
Explanation:
It is endothermic since it absorbs heat. If the reaction RELEASED heat (exothermic) the "+ heat" would be on the right side of the equation.
Answer:
Mercury is useful in lighting because it contributes to the bulbs' efficient operation and life expectancy. Fluorescent and other mercury-added bulbs are generally more energy efficient and last longer than incandescent and other equivalent forms of lighting.
Explanation: