Answer:
330.5 m
Explanation:
In this case, the object is launched horizontally at 30° with an initial velocity of 40 m/s .
The maximum height will be calculated as;
where ∝ is the angle of launch = 30°
vi= initial launch velocity = 40 m/s
g= 10 m/s²
h= 40²*sin²40° / 2*10
h={1600*0.4132 }/ 20
h= 661.1/2 = 330.5 m
The answer is:
C. 361 m/s
The explanation:
To calculate the speed of sound at a given temperature (50°C) we are going to use this formula:
v = 331 + 0.6T
when V is the velocity
and T is the temperature = 50°C
by substitution:
v = 331 + 0.6(50)
v = 361 m/s
So, The correct answer is C.
because of the variation of the motion of the molecules of air with change of temperature so, the velocity (V) of the sound in the air is change with temperature.
<u>Answer:</u>
Yes
<u>Explanation:</u>
Average velocity is the ratio of total displacement and time taken for that displacement:
This means if displacement is zero, then average velocity will also be zero.
Displacement is zero when an object moves some distance in one direction, and then moves the same distance but in the opposite direction.
∴ As it is possible for displacement to be zero, it is also possible for average velocity to be zero.
Static friction is what you are looking for.
Kinetic friction is the force exerted on an already moving object, slowing it down.
A star with large luminosity would have a relatively low absolute magnitude. Absolute magnitude is a number that tells how bright a star is from the Earth. However, this scale is backwards and logarithmic, so having a large absolute magnitude value means that the star is faint.