The endpoint F's coordinates should be given by the formula
x = 2×35 - 15 and y = 2×(- 3) - 26.
<h3>What is the procedure to find the other endpoint?</h3>
In order to solve this problem, we need to derive expressions for the coordinates of the endpoint F using the midpoint formula.
We know the coordinates of the endpoint E and the midpoint M of the line segment EF.
M(x, y) = 0.5×E(x, y) + 0.5×F(x, y).
2×M(x, y) = E(x, y) + F(x, y).
F(x, y) = 2×M(x, y) - E(x, y).
Given that M(x, y) = (35, -3) and E(x, y) = (15, 26), the endpoint F's coordinates are,
F(x, y) = 2×(35, - 3) - (15, 26).
F(x, y) = (70, - 6) + (- 15, - 26).
F(x, y) = (55, - 32).
The equations should be x = 2×35 - 15 and y = 2×(- 3) - 26.
learn more about midpoint here :
brainly.com/question/28224145
#SPJ1