As per the question, the mass of meteorite [ m]= 50 kg
The velocity of the meteorite [v] = 1000 m/s
When the meteorite falls on the ground, it will give whole of its kinetic energy to earth.
We are asked to calculate the gain in kinetic energy of earth.
The kinetic energy of meteorite is calculated as -
Here, J stands for Joule which is the S.I unit of energy.
You traveled a distance of 620.075 meters if it takes you 8.5 seconds to stop.
<u>Given the following data:</u>
- Initial velocity, U = 31.3 m/s
We know that acceleration due to gravity (a) for an object is equal to 9.8 meter per seconds square.
To find the distance traveled, we would use the second equation of motion:
Mathematically, the second equation of motion is given by the formula;
Where:
- S is the distance travelled.
- u is the initial velocity.
- t is the time measured in seconds.
Substituting the parameters into the formula, we have;
<em>Distance, S</em><em> = </em><em>620.075 meters.</em>
Therefore, you traveled a distance of 620.075 meters if it takes you 8.5 seconds to stop.
Read more: brainly.com/question/8898885
Answer:
The Internal energy of the gas did not change
Explanation:
In this situation the Internal energy of the gas did not change and this is because according the the first law of thermodynamics
Δ U = Q - W ------ ( 1 )
Δ U = change in internal energy
Q = heat added
W = work done
since Q = W. the value of ΔU will be = zero i.e. No change
Answer:
<em>The current is 1 A</em>
Explanation:
<u>Current in a Series Connection
</u>
When two or more elements are connected in series, all of them have the same current, and the sum of their individual voltages is the total voltage applied to the circuit.
According to Ohm's law:
V=R.I
Where V is the voltage, R is the resistance and I is the current of a circuit.
We have a voltage of V=1.5 V + 1.5 V = 3 V and a resistance of R=3 ohms.
We can calculate the current by solving for I:
The current is 1 A