Answer:
Your strategy here will be to use the molar mass of potassium bromide,
KBr
, as a conversion factor to help you find the mass of three moles of this compound.
So, a compound's molar mass essentially tells you the mass of one mole of said compound. Now, let's assume that you only have a periodic table to work with here.
Potassium bromide is an ionic compound that is made up of potassium cations,
K
+
, and bromide anions,
Br
−
. Essentially, one formula unit of potassium bromide contains a potassium atom and a bromine atom.
Use the periodic table to find the molar masses of these two elements. You will find
For K:
M
M
=
39.0963 g mol
−
1
For Br:
M
M
=
79.904 g mol
−
1
To get the molar mass of one formula unit of potassium bromide, add the molar masses of the two elements
M
M KBr
=
39.0963 g mol
−
1
+
79.904 g mol
−
1
≈
119 g mol
−
So, if one mole of potassium bromide has a mas of
119 g
m it follows that three moles will have a mass of
3
moles KBr
⋅
molar mass of KBr
119 g
1
mole KBr
=
357 g
You should round this off to one sig fig, since that is how many sig figs you have for the number of moles of potassium bromide, but I'll leave it rounded to two sig figs
mass of 3 moles of KBr
=
∣
∣
∣
∣
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
a
a
360 g
a
a
∣
∣
−−−−−−−−−
Explanation:
<em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>:</em><em> </em><em>3</em><em>6</em><em>0</em><em> </em><em>g</em><em> </em>
Answer:
5Fe⁺² + MnO₄⁻ + 8H⁺ => 5Fe⁺³ + Mn⁺² + 4H₂O
Explanation:
Fe⁺² + MnO₄⁻ + H⁺ => Mn⁺² + Fe⁺³ + H₂O
5(Fe⁺² => Fe⁺³ + 1e⁻) => 5Fe⁺² => 5Fe⁺³ + 5e⁻
<u>MnO₄⁻ + 5e⁻ => Mn⁺² => MnO₄⁻ + 8H⁺ + 5e⁻ => Mn⁺² + 4H₂O</u>
=> 5Fe⁺² + MnO₄⁻ + 8H⁺ => 5Fe⁺³ + Mn⁺² + 4H₂O
Constant Volume Calorimetry, also know as bomb calorimetry, is used to measure the heat of a reaction while holding volume constant and resisting large amounts of pressure. Although these two aspects of bomb calorimetry make for accurate results, they also contribute to the difficulty of bomb calorimetry. In this module, the basic assembly of a bomb calorimeter will be addressed, as well as how bomb calorimetry relates to the heat of reaction and heat capacity and the calculations involved in regards to these two topics.
Introduction
Calorimetry is used to measure quantities of heat, and can be used to determine the heat of a reaction through experiments. Usually a coffee-cup calorimeter is used since it is simpler than a bomb calorimeter, but to measure the heat evolved in a combustion reaction, constant volume or bomb calorimetry is ideal. A constant volume calorimeter is also more accurate than a coffee-cup calorimeter, but it is more difficult to use since it requires a well-built reaction container that is able to withstand large amounts of pressure changes that happen in many chemical reactions.
Most serious calorimetry carried out in research laboratories involves the determination of heats of combustion ΔHcombustion" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ΔHcombustionΔHcombustion, since these are essential to the determination of standard enthalpies of formation of the thousands of new compounds that are prepared and characterized each month. In a constant volume calorimeter, the system is sealed or isolated from its surroundings, and this accounts for why its volume is fixed and there is no volume-pressure work done. A bomb calorimeter structure consists of the following:
Steel bomb which contains the reactantsWater bath in which the bomb is submergedThermometerA motorized stirrerWire for ignition
is usually called a “bomb”, and the technique is known as bomb calorimetry
Another consequence of the constant-volume condition is that the heat released corresponds to qv , and thus to the internal energy change ΔUrather than to ΔH. The enthalpy change is calculated according to the formula
(1.1)ΔH=qv+ΔngRT" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: center; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; width: 10000em !important; position: relative;">ΔH=qv+ΔngRT(1.1)(1.1)ΔH=qv+ΔngRT
Δng" role="presentation" style="display: inline-table; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; word-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">ΔngΔng is the change in the number of moles of gases in the reaction.
A. the wax is a both; 1. physical change-solid to liquid.
2. chemical change- burned to CO2 + H20 + heat + carbon as seen as black on the rod
b. the wick is neither; the wick does not change, just provides conduit for wax to flame
c. the glass rod is physical change; the carbon is only deported
HOPE THIS HELPS, IVE ALSO LEARNING BEEN LEARNING THIS RECENTLY
Nuclear reactions involve a change in an atom's nucleus, usually producing a different element. Chemical reactions, on the other hand, involve only a rearrangement of electrons and do not involve changes in the nuclei.
<h3>What affects the rate of nuclear reactions?</h3>
Reactant concentration, the physical state of the reactants, and surface area, temperature, and the presence of a catalyst are the four main factors that affect reaction rate.
<h3>What is the main difference between chemical reactions and nuclear reactions?</h3>
Chemical reaction normally occurs outside the nucleus. Nuclear reaction happens only inside the nucleus. When chemical reactions occur elements hold their identity and the nuclei of atoms also remains unchanged. During nuclear reactions, the nuclei of atoms changes completely and new elements are formed.
Learn more about chemical reaction here:
<h3>
brainly.com/question/11231920</h3><h3 /><h3>#SPJ4</h3>