When n is small (less than 30), how does the shape of the t distribution compare to the normal distribution then"it is flatter and wider than the normal distribution."
<h3>What is normal distribution?</h3>
The normal distribution explains a symmetrical plot of data around the mean value, with the standard deviation defining the width of the curve. It is represented graphically as "bell curve."
Some key features regarding the normal distribution are-
- The normal distribution is officially known as the Gaussian distribution, but the term "normal" was coined after scientific publications in the nineteenth century demonstrated that many natural events emerged to "deviate normally" from the mean.
- The naturalist Sir Francis Galton popularized the concept of "normal variability" as the "normal curve" in his 1889 work, Natural Inheritance.
- Even though the normal distribution is a crucial statistical concept, the applications in finance are limited because financial phenomena, such as expected stock-market returns, do not fit neatly within a normal distribution.
- In fact, prices generally follow a right-skewed log-normal distribution with fatter tails.
As a result, relying as well heavily on the a bell curve when forecasting these events can yield unreliable results.
To know more about the normal distribution, here
brainly.com/question/23418254
#SPJ4
Answer:
.01%*
Step-by-step explanation:
Individually, they both have a rate of failure of 1%.
.01 x .01 = .0001
Therefore they have a combined probability of failure of .01%
*Disclaimer!!
I am not the best at this area in math so I would still reference against someone else's answer, but this is my best effort :)
My answer to the question is as follows:
First one looks like you are squaring the number, then multiplying the result by 4, i.e.
<span>y=4<span>x2
</span></span><span>second one is similar, but instead of squaring and multiplying by 4, you are squaring and then dividing by 2
</span>
I hope my answer has come to your help. God bless and have a nice day ahead!
Answer:
31 over 3
Step-by-step explanation:
Using this equation, f(3) = 23.
In order to find the value of f(3), we need to take the f(x) equation and put 3 everywhere we see x. Then we follow the order of operations to solve. So, let's start with the original.
f(x) = 2x^2 + 5sqrt(x - 2)
Now place 3 in for each x.
f(3) = 2(3)^2 + 5sqrt(3 - 2)
Now square the 3.
f(3) = 2(9) + 5 sqrt(3 - 2)
Do the subtraction inside of the parenthesis.
f(3) = 2(9) + 5sqrt(1)
Take the square root
f(3) = 2(9) + 5(1)
Multiply.
f(3) = 18 + 5
And add.
f(3) = 23