I assume the 100 N force is a pulling force directed up the incline.
The net forces on the block acting parallel and perpendicular to the incline are
∑ F[para] = 100 N - F[friction] = 0
∑ F[perp] = F[normal] - mg cos(30°) = 0
The friction in this case is the maximum static friction - the block is held at rest by static friction, and a minimum 100 N force is required to get the block to start sliding up the incline.
Then
F[friction] = 100 N
F[normal] = mg cos(30°) = (10 kg) (9.8 m/s²) cos(30°) ≈ 84.9 N
If µ is the coefficient of static friction, then
F[friction] = µ F[normal]
⇒ µ = (100 N) / (84.9 N) ≈ 1.2
Answer:
A point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
Explanation:
We can find the distance with the following equation since the acceleration is cero (the disk rotates at a constant rate):
Where:
v: is the tangential speed of the disk
t: is the time = 30 s
The tangential speed can be found as follows:
Where:
ω: is the angular speed = 100 rpm
r: is the radius = 50 cm = 0.50 m
Now, the distance traveled by the disk is:
Therefore, a point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
I hope it helps you!
The magnetic field direction and direction of induced current in a wire are related by the right hand grip rule. Since the magnetic field was upwards, the thumb points upwards and the fingers curl around it. When viewed from above, it is seen as a current flowing in the counter clockwise direction.
The 3003 aluminum alloy is made up of 1.25% Magnesium and 0.1% Copper. This combination is designed to increase the strength of the material over other types of alloys such as those of the 1000 series. This alloy provides a medium strength and can be educated by cold work.
The alloy is not heat treatable and generally has good formability, corrosion resistance and weldability.
However, being a material that hardens by cold work, welding a 3003 Aluminum structure will cause the body to undergo recrystallization which will generate a loss in the 'resistance' of the material and the force capable of withstanding. If this aluminum will be used for structural purposes, it should not be welded. It would be better to perform the structure with a 6061 aluminum, which has similar characteristics and is not so affected by welding.