15/60 simplified is 1/4
1/4 is not equal to 3/4
<u>I</u><u>f</u><u> </u><u>w</u><u>e</u><u> </u><u>h</u><u>a</u><u>v</u><u>e</u><u> </u><u>t</u><u>o</u><u> </u><u>f</u><u>i</u><u>n</u><u>d</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>t</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>i</u><u>n</u><u>s</u><u> </u><u>t</u><u>h</u><u>e</u><u>n</u><u> </u><u>w</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>u</u><u>s</u><u>e</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>f</u><u>o</u><u>l</u><u>l</u><u>o</u><u>w</u><u>i</u><u>n</u><u>g</u><u> </u><u>rule:</u>
- <u>I</u><u>f</u><u> </u><u>E</u><u>a</u><u>c</u><u>h</u><u> </u><u>P</u><u>u</u><u>r</u><u>s</u><u>e</u><u> </u><u>C</u><u>o</u><u>n</u><u>t</u><u>a</u><u>i</u><u>n</u><u>s</u><u> </u><u>8</u><u>c</u><u>o</u><u>i</u><u>n</u><u>s</u><u> </u><u>,</u><u>t</u><u>h</u><u>e</u><u>n</u><u> </u><u>w</u><u>e</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>f</u><u>i</u><u>n</u><u>d</u><u> </u><u>t</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>c</u><u>o</u><u>i</u><u>n</u><u>s</u><u> </u><u>b</u><u>y</u><u> </u><u>m</u><u>u</u><u>l</u><u>t</u><u>i</u><u>p</u><u>l</u><u>y</u><u>i</u><u>n</u><u>g</u><u> </u><u>8</u><u> </u><u>t</u><u>o</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>p</u><u>u</u><u>r</u><u>s</u><u>e</u>
<u>T</u><u>h</u><u>u</u><u>s</u><u>,</u>
<h3><u>R</u><u>u</u><u>l</u><u>e</u><u> </u><u>i</u><u>s</u><u> </u><u>:</u></h3>
<u>︎⠀⠀ ⠀⠀ ⠀⠀ ⠀</u><u>︎⠀⠀ ⠀⠀ ⠀</u><u>8</u><u>×</u><u>T</u><u>o</u><u>t</u><u>a</u><u>l</u><u> </u><u>N</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>o</u><u>f</u><u> </u><u>P</u><u>u</u><u>r</u><u>s</u><u>e</u><u>.</u>
<h2><u>─━─━─━─━─━─━─━─━─━─━─━─━─</u></h2>
Normally, we could add exponents.
however, that only is possible when the bases are the same
recall what exponents mean
12³=12*12*12
so we cannot add exponents for 12³*11³ because that means 12*12*12*11*11*11
it would not equal 12⁶ or 11⁶
or you could refer to the rule
notice when x=x then we can add the bases
fun fact below
we can reverse a previous exponential rule like this
since
then
therefor
we can't add the exponents because the bases are not the same
Volume of a cone=(1/3)πr²h
Volume of a cylinder=πr²h
The cone has the same radius (r) and height than the cylinder that the cone fits exactly inside of.
Data:
Volume of a cone=5 in³
Then:
(1/3)πr²h=5 in³
πr²h=3(5 in³)
πr²h=15 in³ (remember: volume of a cylinder=πr²h)
Then the volume of a cylinder that the cone fits exactly inside of would be:
15 in³
Total number of cakes made by Simon = 30 cakes.
Number of cakes gave to Sali = 1/5 Of total cakes = 1/5 * 30 = 6 cakes.
Number of the cakes gave to Jane = 10% of 30 cakes
10% can be written as 10/100 in fracions and in decimals it would be 0.10.
Therefore, 10% of 30 cakes = 0.10 times 30 = 3 cakes.
Total number of cakes left = Total cakes made - Cakes gave to Sali - Cakes gave to Jane = 30-6-3
Therefore, Total number of cakes left = 21.
21 cakes left our of 30 cakes.
21 out of 30 could be written in fracion form as 21/30.
We can reduce this fracion in simplest form by dividing top and bottom by 3, we get
7/10.
Therefore, 7/10 fraction of the cakes does he have left.