To solve the problem, we
must know the heat capacity of ice and water.
For Cp = 2090 J/kg C
H = mCpT
H = (10 kg) ( 2090 J/ Kg C)
( -23 C)
H = - 480700 J
For water Cp = 4180 j/kg C
H = (100 kg) ( 4180 J/kg C)
( 60 C)
<span>H = 2508000 J</span>
1) Focal length
We can find the focal length of the mirror by using the mirror equation:
(1)
where
f is the focal length
is the distance of the object from the mirror
is the distance of the image from the mirror
In this case,
, while
(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:
from which we find
2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Answer:
F = (913.14 , 274.87 )
|F| = 953.61 direction 16.71°
Explanation:
To calculate the resultant force you take into account both x and y component of the implied forces:
Thus, the net force over the body is:
Next, you calculate the magnitude of the force:
and the direction is:
Answer:
1) d
2) 5 m/s
3) 100
Explanation:
The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:
(i)
The equation for velocity v and a constant acceleration a is:
(ii)
1) Solve equation (ii) for acceleration a and plug the result in equation (i)
(iii)
(iv)
Simplify equation (iv) and use the given values v = 0, x₀ = 0:
(v)
2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:
3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):
It’s gonna be Oxygen ....