Answer: D. It is the currently accepted atomic model.
Explanation:
It is the mordern atomic model, also known as the Electron Cloud Model. Indicating that the nucleus of an atom is surrounded by a cloud of electrons.
Answer:
no.
Explanation:
The reason this has
never happened is due to the source of magnetic fields: moving electric
charges. When electric charges (e.g. electrons) move in circles, they
produce a magnetic field. In a piece of iron, it is very easy to line up
these circles, getting all the little magnets to work together as one big
magnet.
For each of these circles, one side is the north pole and one side is the
south pole. Since each circle has two sides, each circle has a north and a
south pole. Even the smallest possible magnets (spinning electrons) have a
north and a south pole.
For sig figs, you count the total number of numbers that aren’t 0, you only count 0 if they are after a decimal point. since there is not a decimal point, there are 2 significant figures, answer A
<h3><u>Answer;</u></h3>
The statements that are True are;
- Upon binding a molecule of oxygen, Hb undergoes a conformational change that makes the binding of subsequent O2 molecules easier.
- The conformational change induced in Hb upon binding oxygen is the result of a small movement (0.2 Å) of the iron cation in the center of heme.
- Site-directed mutagenesis studies have indicated that the cooperativity of O2 binding in Hb is attributable to the movement of the F helix in Hb.
<h3><u>Explanation</u>;</h3>
- Hemoglobin is a key pigment in the blood that transports oxygen gas to all the tissues in the body. It is made up of two types of chains; that is two alpha chains and two beta chains.
- in its deoxygenated state hemoglobin has a low affinity for oxygen compared to myoglobin. When oxygen is bound to the first subunit of hemoglobin it leads to subtle changes to the quaternary structure of the protein. This in turn makes it easier for a subsequent molecule of oxygen to bind to the next subunit.