Bromine attracts electrons more strongly. Cesium is In fact the least electro negative element.
Sodium is more likely to lose an electron because is is less electro negative. Strong electronegativity make the element want more electrons. Sodium has loose electrons with a lower electronegativity so it gives it up easier.
0.004382166 Make sure to round to the right amount of Sig Figs
Answer: The maximum wavelength of light for which a carbon-chlorine Single bond could be broken by absorbing a single photon is 354 nm
Explanation:
The relation between energy and wavelength of light is given by Planck's equation, which is:
where,
E = energy of the light = (1kJ=1000J)
N= avogadro's number
h = Planck's constant
c = speed of light
= wavelength of light
Thus the maximum wavelength is 354 nm
Its about 11.5hg because if you divide it with the atom it would result to 11.5hg
Answer:
20 amu
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
Atomic mass = Number of protons + number of neutrons
Atomic number = Number of electrons or number of protons.
In given question it is stated that atom has 11 electrons and -1 charge it means this atom has 12 electrons in neutral state.
Thus it has 12 protons because number of electrons and protons are always equal.
Atomic mass of given atom:
Atomic mass = Number of protons + number of neutrons
Atomic mass = 12 + 8 = 20 amu