Answer:
Explanation:
Area A of the coil = .1 x .1 = .01 m²
no of turns n = 5
magnetic field B = .5 t²
Flux Φ perpendicular to plane passing through it.= nBA sin30
rate of change of flux
dΦ/dt = nAdBsin30 / dt
= nA d/dt (.5t²x .5 )
= nA x 2 x .25 x t
At t = 4s
dΦ/dt = nA x 2
= 5x .01 x 2
= .1
current = induced emf / resistance
= .1 / 4
= .025 A
= 25 mA.
Gas stations or sewage treatment facility
Answer:
Density of liquid = 4730 kg/m³
Atmospheric pressure on planet X = 8401.7 N/m²
Explanation:
Pressure, P = ρgh where ρ = density of liquid, g =9.8 m/s² and h = height of column at earth's surface = 2185 mm. Since P = atmospheric pressure, for mercury, P = ρ₁gh₁ where ρ₁ = 13.6 g/cm³ and h₁ = 760 mm
So, ρgh = ρ₁gh₁
ρ = ρ₁h₁/h = 13.6 g/cm³ × 760/2185 = 4.73 g/cm³ = 4730 kg/m³
The atmospheric pressure on planet X
P = ρg₁h₃ g₁ = g/4 and h₃ = 725 mm = 0.725 m
on planet X
P = ρg₁h₃ = (4730 kg/m³ × 9.8 m/s² × 0.725 m)/4 = 8401.7 N/m²
Answer:
(a). 14.4 lbf/in^2.
(b). 27.8 in, AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.
Explanation:
So, from the question above we are given the following parameters which are going to help us in solving this particular Question;
=> The "barometer accidentally contains 6.5 inches of water on top of the mercury column (so there is also water vapor instead of a vacuum at the top of the barometer)"
=> "On a day when the temperature is 70oF, the mercury column height is 28.35 inches (corrected for thermal expansion)."
With these knowledge, let us delve right into the solution;
(a). The barometric pressure = water vapor pressure + acceleration due to gravity (ft/s^2) × water density(slug/ft^3) × {ft/12 in}^3 × [ height of mercury column + specific gravity of mercury × height of water column].
The barometric pressure= 0.363 + {(62.146) ÷ (12^3) × 390.6425}. = 14.4 lbf/in^2.
(b). { (13.55 × length of mercury) + 6.5 } × (62.15÷ 12^3) = 14.4 - 0.603.
Length of mercury = 27.8 in.
AS THE TEMPERATURE INCREASES, THE LENGTH OF MERCURY DECREASES.