The asymptotes of the reciprocal function are x = 3 and y = 4. Also, the domain is x < 3 or x > 3 and the range is y < 4 or y > 4
<h3>How to determine the values of a, c, d and k?</h3>
The function is given as:
f(x) = -2[1/0.5(x -3)] + 4
A reciprocal function is generally represented as:
f(x) = a[1/(x -c)] + k
So, we have:
a = -2
c = -3 * 0.5
c = -1.5
k = 4
d = 0
Hence, the values of a, c, d and k are -2, -1.5, 0 and 4
<h3>The asymptotes</h3>
We have:
f(x) = -2[1/0.5(x -3)] + 4
Set the radical to 0
y = 0 + 4
Evaluate
y = 4
Set the denominator to 0
x - 3 = 0
Evaluate
x = 3
Hence, the asymptotes are x = 3 and y = 4
<h3>The graph of the function</h3>
See attachment for the graph of the function f(x) = -2[1/0.5(x -3)] + 4
The table of values is
x y
-4 4.6
-2 4.8
2 8
4 0
From the graph of the function, the domain is x < 3 or x > 3 and the range is y < 4 or y > 4
Read more about functions at:
brainly.com/question/2328150
#SPJ1