Answer:
Explanation:
A) bubbles show hydrogen gas escaping
B) the water reacted with sodium to form an alkaline solution
The volume becomes two. You have to use the equation P1 x V1 = P2 x V2
P is pressure and V is volume.
P1 = 50 P2 = 125
V1 = 5 V2 = v (we don't know what it is)
Then set up the equation:
50 times 5 = 125 times v
250 = 125v
the divide both sides by 125 and isolate v
2 = v
Therefore the volume is decreased to 2.
Also, Boyle's Law explains this too: Volume and pressure are inversely related, This means that when one goes up the other goes down (ie when pressure increases volume decreases and vice versa). Becuase the pressure went up from 50 KPa tp 125 KPa the volume had to decrease.
Answer:
34,6g of (NH₄)₂SO₄
Explanation:
The boiling-point elevation describes the phenomenon in which the boiling point of a liquid increases with the addition of a compound. The formula is:
ΔT = kb×m
Where ΔT is Tsolution - T solvent; kb is ebullioscopic constant and m is molality of ions in solution.
For the problem:
ΔT = 109,7°C-108,3°C = 1,4°C
kb = 1.07 °C kg/mol
Solving:
m = 1,31 mol/kg
As mass of X = 600g = 0,600kg:
1,31mol/kg×0,600kg = 0,785 moles of ions. As (NH₄)₂SO₄ has three ions:
0,785 moles of ions× = 0,262 moles of (NH₄)₂SO₄
As molar mass of (NH₄)₂SO₄ is 132,14g/mol:
0,262 moles of (NH₄)₂SO₄× = <em>34,6g of (NH₄)₂SO₄</em>
<em></em>
I hope it helps!
Answer:
V = 34.55 L
Explanation:
Given that,
No of moles, n = 1.4
Temperature, T = 20°C = 20 + 273 = 293 K
Pressure, P = 0.974 atm
We need to find the volume of the gas. It can be calculated using Ideal gas equation which is :
PV=nRT
R is gas constant,
Finding for V,
So, the volume of the gas is 34.55 L.
Answer: -
1 mol
Explanation: -
Number of moles of Sulphur S = 7
Number of moles of O2 = 9
The balanced chemical equation for the reaction is
2S (s)+3 O2 (g)→2SO3(g)
From the above reaction we can see that
3 mol of O2 react with 2 mol of S
9 mol of O2 will react with
= 6 mol of S
Unreacted S = 7 - = 1 mol.
If a reaction vessel initially contains 7 mol S and 9 mol O2
1 mole of s will be in the reaction vessel once the reactants have reacted as much as possible