Answer: 313920
Explanation:First, we’re going to assume that the top of the circular plate surface is 2 meters under the water. Next, we will set up the axis system so that the origin of the axis system is at the center of the plate.
Finally, we will again split up the plate into n horizontal strips each of width Δy and we’ll choose a point y∗ from each strip. Attached to this is a sketch of the set up.
The water’s surface is shown at the top of the sketch. Below the water’s surface is the circular plate and a standard xy-axis system is superimposed on the circle with the center of the circle at the origin of the axis system. It is shown that the distance from the water’s surface and the top of the plate is 6 meters and the distance from the water’s surface to the x-axis (and hence the center of the plate) is 8 meters.
The depth below the water surface of each strip is,
di = 8 − yi
and that in turn gives us the pressure on the strip,
Pi =ρgdi = 9810 (8−yi)
The area of each strip is,
Ai = 2√4− (yi) 2Δy
The hydrostatic force on each strip is,
Fi = Pi Ai=9810 (8−yi) (2) √4−(yi)² Δy
The total force on the plate is found on the attached image.
Let the distance between the towns be d and the speed of the air be s.
distance = speed * time
convert the minutes time into hours.
When flying into the wind, ground speed will be air speed MINUS wind speed, hence the against the wind trip is described by:
d
s−15
=
7
3
return trip is then :
d
s+15
=
7
5
Cross-multiplying both we get the two-variable system:
3d=7∗(s−15)5d=7∗(s+15)
3d=7s−1055d=7s+105
subtract first equation from second equation we get
2d=210d=105km
Substitute the value of d in the above equations for s.
5∗105=7s+1057s=420s=60km/hr
Answer:
The required new pressure is 775 mm hg.
Explanation:
We are given that gas has a volume of 185 ml and a pressure of 310 mm hg. The desired volume is 74.0 ml.
We have to find the required new pressure.
Let the required new pressure be ''.
As we know that Boyle's law formula states that;
where, = original pressure of gas in the container = 310 mm hg
= required new pressure
= volume of gas in the container = 185 ml
= desired new volume of the gas = 74 ml
So,
= 775 mm hg
Hence, the required new pressure is 775 mm hg.