Answer: x=0
Step-by-step explanation:
Multiply both sides of the equation by 35, the least common multiple of 5,7.
7×4x−5×3x=5×4x+5×5x
Multiply 7 and 4 to get 28.
28x−5×3x=5×4x+5×5x
Multiply −5 and 3 to get −15.
28x−15x=5×4x+5×5x
Combine 28x and −15x to get 13x.
13x=20x+25x
Combine 20x and 25x to get 45x.
13x=45x
Subtract 45x from both sides
13x−45x=0
Combine 13x and −45x to get −32x
−32x=0
Product of two numbers is equal to 0 if at least one of them is 0. Since −32 is not equal to 0, x must be equal to 0.
X=0
Answer:
x = -203/23
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
y = -23(x + 9) + 4
y = 0
<u>Step 2: Solve for </u><em><u>x</u></em>
- Substitute in <em>y</em>: 0 = -23(x + 9) + 4
- [Subtraction Property of Equality] Subtract 4 on both sides: -4 = -23(x + 9)
- [Division Property of Equality] Divide -23 on both sides: 4/23 = x + 9
- [Subtraction Property of Equality] Subtract 9 on both sides: -203/23 = x
- Rewrite: x = -203/23
Answer:
C.
Step-by-step explanation:
First, let's cancel out the x by multiplying 2x + 18y = -9 by -2.
-2 ( 2x + 18y = -9) = -4x -36y = 18
Then, we combine the two equations.
-4x + 4x = 0
18y - 36y = -18y
-27 + 18 = -9
Our new equation is -18y = -9.
Now, divide both sides by -18.
-18y / -18 = y
-9/ -18 = 1/2
y = 1/2
We can plug in a value for y since y = 1/2 now.
Let's use 2x + 18y = -9
Plug in y.
2x + 18(1/2) = -9
2x + 9 = -9
Then, subtract 9 from both sides.
2x = -18
Divide by 2.
2x/2 = x
-18/2 = -9
x = -9
Lastly, we can plug in both x and y values to see it works.
2(-9) + 18(1/2) = -9
-18 + 9 = -9
Therefore, the values of x and y does work.
x = -9
y = 1/2