Answer:
<u>Explanation:</u>
A linear equation is of the form: y = mx + b where
- m is the slope
- b is the y-intercept (where it crosses the y-axis)
x + 4y = 16
4y = -x + 16
The y-intercept (b) = 4
Next, find the slope given point (4, 5) and b = 4
Batesian mimicry is an adaptive feature associated with the coloration of a given species in a given environment.
<h3>What is Batesian mimicry?</h3>
Batesian mimicry can be defined as a type of adaptive feature associated with the coloration of a particular species and/or population.
On the first island, the color of the population won't change because of the absence of predators.
On the second island, the color of the population will change because of the presence of predators that can be alerted by the color.
On the third island, the color of the population won't change because of the presence of a species with a similar color.
In conclusion, Batesian mimicry is an adaptive feature associated with the coloration of a given species in a given environment.
Learn more about Batesian mimicry here:
brainly.com/question/14139071
#SPJ1
Supernova nucleosynthesis is also thought to be responsible for the creation of rarerelements heavier than iron<span> and nickel, in the last few seconds of a type II supernova event.</span>
I'm happy to know that the diagram shows how it's all set up.
If I could see the diagram, then I could probably do a much
better job with an answer. As it is ... 'flying blind' as it were ...
I'm going to wing it and hope it's somewhat helpful.
If the pulley is movable, then I'm picturing one end of the rope
tied to a hook in the ceiling, then the rope passing down through
the pulley, then back up, and you lifting the free end of the rope.
A very useful rule about movable and combination pulleys is:
the force needed to lift the load is
(the weight of the load)
divided by
(the number of strands of rope supporting the load) .
With the setup as I described it, there are 2 strands of rope
supporting the load ... one on each side of the pulley. So the
force needed to lift the load is
(250 N) / 2 = 125 N .