Hahaha ?bajajsisjbwisi sosiwisos jk its so long also please make sure to stan loona and bts also stream back door by stray kids
Answer:
protons, nuetrons, electrons
Explanation:
compounds and electrons are made up of atoms.
Answer:
E. Water Freezing
Explanation:
Entropy refers to the degree of disorderliness of a system.
A. Water Evaporating: There is an increase in entropy, this is because the phase change is from liquid to gas. Gas particles are more disordered than liquid.
B. Dry Ice sublimating: Sublimating refers to a phase change from solid to gas. This is an increase in entropy, this is because the gas particles are more disordered than solid particles
C. Water Boiling: The phase change is from liquid to gaseous state. There is an increase in entropy. Gas particles are more disordered than liquid.
D. Ice melting: The phase change is from solid to liquid state. There is an increase in entropy. Liquid particles are more disordered than that of solid.
E. Water Freezing: The phase change is from liquid to solid state. There is a decrease in entropy. solid particles are less disordered than those of liquid.
Answer:
B = b -a/RT
C = b^2
a = 1.263 atm*L^2/mol^2
b = 0.03464 L/mol
Explanation:
In the given question, we need to express the van der Waals equation of state as a virial expansion in powers of 1/Vm and obtain expressions for B and C in terms of the parameters a and b. Therefore:
Using the van deer Waals equation of state:
With further simplification, we have:
Then, we have:
Therefore,
Using the expansion:
Therefore,
Thus:
equation (1)
Using the virial equation of state:
Thus:
equation (2)
Comparing equations (1) and (2), we have:
B = b -a/RT
C = b^2
Using the measurements on argon gave B = −21.7 cm3 mol−1 and C = 1200 cm6 mol−2 for the virial coefficients at 273 K.
[/tex] = 0.03464 L/mol
a = (b-B)*RT = (34.64+21.7)*(1L/1000cm^3)*(0.0821)*(273) = 1.263 atm*L^2/mol^2
2. 3H2 + N2 means you have 6 Hs and 2 Ns. NH3 has one N and 3 Hs, so you need 2 NH3s in order to have the 2 and 6 of each that you need on both sides of the reaction.