Using the normal distribution, there is a 0.4826 = 48.26% probability that the sample mean is between 15 and 16 grams per day.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean and standard deviation is given by:
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation .
For this problem, the parameters are given as follows:
The probability is the <u>p-value of Z when X = 16 subtracted by the p-value of Z when X = 15</u>, hence:
X = 16:
By the Central Limit Theorem
Z = 2.11
Z = 2.11 has a p-value of 0.9826.
X = 15:
Z = 0
Z = 0 has a p-value of 0.5.
0.9826 - 0.5 = 0.4826 = 48.26% probability that the sample mean is between 15 and 16 grams per day.
More can be learned about the normal distribution at brainly.com/question/15181104
#SPJ1