The angle of projection given that the range is 256√3 m and the maximum height reached is 64 m is 30°
<h3>Data obtained from the question</h3>
- Range (R) = 256√3 m
- Maximum height (H) = 64 m
- Acceleration due to gravity (g) = 9.8 m/s²
- Angle of projection (θ) = ?
<h3>How to determine the angle of projection</h3>
R = u²Sine(2θ) / g
256√3 = u²Sine(2θ) / 9.8
Cross multiply
256√3 × 9.8 = u²Sine(2θ)
Divide both sides by Sine(2θ)
u² = 256√3 × 9.8 / Sine(2θ)
H = u²Sine²θ / 2g
64 = [256√3 × 9.8 / Sine(2θ)] × [Sine²θ / 2 × 9.8]
64 = [256√3 / Sine(2θ)] × [Sine²θ / 2]
Recall
Sine²θ = SineθSineθ
Sine2θ = 2SineθCosθ
Thus,
64 = [256√3 / 2SineθCosθ] × [SineθSineθ / 2]
64 = 256√3 × Sineθ / 4Cosθ
Recall
Sineθ / Cosθ = Tanθ
Thus,
64 = 256√3 / 4 × Tanθ
Divide both side by 256√3 / 4
Tanθ = 64 ÷ 256√3 / 4
Tanθ = 0.5774
Take the inverse of Tan
θ = Tan⁻¹ 0.5774
θ = 30°
Learn more about projectile motion:
brainly.com/question/20326485
#SPJ1