Given:
volume of 0.08 m³
density of 7,840 kg/m³
Required:
force of gravity
Solution:
Find the mass using density
equation.
D = M/V
M = DV
M = (7,840 kg/m³)(0.08 m³)
M = 627.2kg
F = Mg
F = (627.2kg)(9.8m/s2)
F = 6147N
Answer:The ideal gas law is represented mathematically as: PV=nRT. P- pressure, V- volume, n-number of moles of gas, R- ideal gas constant, T- temperature.
Explanation:The ideal gas law is used as a prediction of the behavior of many gases, when subjected to different conditions.
he ideal gas law has so many limitations.
An increase in the pressure or volume, decreases the number of moles and temperature of the gas.
Empirical laws that led to generation of the ideal gas laws, considered two variables and keeping the others constant. This empirical laws include, Boyle's law, Charles's law, Gay Lusaac's law and Avogadro's law.
Answer:
BCI3 is a non polar compound because there is no neutral in it
The statement above is FALSE.
Temperature is the degree of coldness or hotness of a body while heat transfer is the transfer of thermal energy from one object to another object. Temperature tells us how cold or hot a body is and it can be measured in Celsius, Kelvin or Fahrenheit. The thermometer is the instrument that is used in the measurement of temperature. Change in temperature is an important indicator that is used in various ways in humans and external systems.
Answer:
Molality = 1.13 m
Explanation:
Molality is defined as the moles of the solute present in 1 kilogram of the solvent.
Given that:
Mass of = 26.5 g
Molar mass of = 32.04 g/mol
The formula for the calculation of moles is shown below:
Thus,
Mass of water = 735 g = 0.735 kg ( 1 g = 0.001 kg )
So, molality is:
<u>Molality = 1.13 m</u>