Let h = distance (m) to the water surface.
Initial velocity, u = 0 (because the stone was dropped).
Use the formula
h = ut + (1/2)gt^2
where g = 9.8 m/s^2 (acc. due to graity)
t = time (s)
h = (1/2)*(9.8)*(3^2) = 44.1 m
Answer: a
Explanation: because the answer is 1.4444444 and that's the closest
Answer:
16613 m/s
Explanation:
Given that
mass of the fly, m = 0.55 g = 0.55*10^-3 kg
Kinetic Energy of the fly, E = 7.6*10^4 J
Speed of the fly, v = ? m/s
We know that the Kinetic Energy is that energy that an object, in this case, the fly, possesses due to its motion.
The Kinetic Energy, KE of any object is represented by the formula
KE = 1/2 * m * v²
If we substitute the values in the relation, we have,
7.6*10^4 = 1/2 * 0.55*10^-3 * v²
v² = (15.2*10^4) / 0.55*10^-3
v² = 2.76*10^8
v = √2.76*10^8
v = 16613 m/s
Thus, the fly would need a speed of 16.6 km/s in order to have a Kinetic Energy of 7.6*10^4 J
Answer:
Abdominal
Sitting up, postural alignment
Biceps
Lifting, pulling
Deltoids
Overhead lifting
Erector Spinae
Postural alignment
Gastronemius & Soleus
Push off for walking, standing on tiptoes
Gluteus
Climbing stairs, walking, standing up
Hamstrings
Walking
Latissimus Dorsi & Rhomboids
Postural alignment, pulling open a door
Obliques
Rotation and side flexion of body
Pectoralis
Push up, pull up, bench press
Quadriceps
Climbing stairs, walking, standing up
Trapezius
Moves head sideways
Triceps
Pushing
God bless you. Because my soul almost left my body when i had to do this.
Answer:
Pressure applied by the man= 285103.125 or 41.35
Explanation:
Pressure is defined as the perpendicular force applied per unit area.
i.e.
Now,
where, = mass of the body(man) = 93 kg
= acceleration due to gravity of Earth = 9.81
covered is equal to the area of both stilts(a man generally stands on two feet)
therefore
and putting in the values, we get,
Now we need to convert to our required units:
(We can get the above result by individually converting kg to lb and meters to inches respectively)
Using the above relations we get,